FUZZY INFERENCE SYSTEMS BASE ON POLYNOMIAL CONSEQUENTS OF FUZZY RULES
Аннотация
Ключевые слова
Полный текст:
PDFЛитература
Zadeh L.A. (1965) Fuzzy sets. Information and Control, 8, P. 338-353.
Zadeh L.A. (1975) The concept of a linguistic variable and its application to approximate reasoning. Information Sciences, 8(8), P.199–249, P.301—357.
Mamdani E. H. (1974) Application of fuzzy algorithms for the control of a simple dynamic plant. In Proc IEEE, P. 121-159.
Lee C.C. (1990) Fuzzy logic in control systems: Fuzzy logic controller. IEEE Trans. Syst. Man Cybern, 20(2), P. 404-418.
Mizumoto M. (1988) Fuzzy controls under various fuzzy reasoning methods. Inform. Sci, 45, P. 129–151.
Mendel J.M., Mouzouris G.C. (1997) Designing fuzzy logic systems. IEEE Transactions on
Circuits and Systems II: Analog and Digital Signal Processing, 44(11), P. 885-895.
Zaychenko Yu.P. (2008) Fuzzy Models and Methods in Intelligent Systems. K.: Publishing House “Slovo”, 344 p.
Shtovba S.D. (2007) Fuzzy systems design by MATLAB mean. M.: Goryachaya liniya – Telecom, 288 p.
Yershov S., Ponomarenko R. (2016) Methods of parallel computing for multilevel fuzzy Takagi-Sugeno systems. International Conference of Programming – UkrPROG’2016. In:
CEUR Workshop Proceedings, CEUR-WS.org, P. 141-149. URL: http://ceur-ws.org/Vol1631/141-149.pdf.
Lizunov, P., Biloshchytskyi, A., Kuchansky, A., Andrashko, Yu., Biloshchytska, S. (2019).
Improvement of the method for scientific publications clustering based on N-gram analysis
and fuzzy method for selecting research partners. Eastern-European Journal of Enterprise
Technologies, 4(4(100)), 6-14. doi: https://doi.org/10.15587/1729-4061.2019.175139
Biloshchytskyi, A., Kuchansky, A., Andrashko, Yu., Biloshchytska, S., Dubnytska, A., & Vatskel, V. (2017). The Method of the Scientific Directions Potential Forecasting in Infocommunication Systems of an Assessment of the Research Activity Results. 2017 IEEE
International Conference «Problems of Infocommunications. Science and Technology» (PIC S&T), 69-72. doi: 10.1109/INFOCOMMST.2017.8246352
Leonenkov A.V. (2005) Fuzzy modeling in MATLAB environment and fuzzyTECH. – SPb .: BHV-Petersburg. – 736 p.
Passino, Kevin M. (1998) Fuzzy control. Addison-Wesley – 502 p.
Rutkovskaya D., Pilinsky M., Rutkovsky L. (2006) Neural networks, genetic algorithms and fuzzy systems. – Moscow: Goryachaya liniya – Telekom. – 452 p.
Takagi T., Sugeno M. (1985) Fuzzy identification of systems and its application to modeling and control. IEEE Trans. of Systems, Man and Cybernetics, 15(1), P. 116-132.
Larsen P.M. (1980) Industrial applications of fuzzy logic control. Int. J. Man-Mach. Studies. 12, P. 3-10.
Tsukamoto Y. (1979) An approach to fuzzy reasoning method. Advances in Fuzzy Set Theory and Applications, Amsterdam: North-Holland, P. 157-160.
Wang D. (2006) A survay of hierarchical fuzzy systems (invited paper). International journal of computational cognition, 4(1), P. 18–29.
Cordon O. (2002) Linguistic modeling by hierarchical systems of linguistic rules. IEEE Trans. Fuzzy Syst, 10, P. 2-20.
Yager R.R. (1993) On a hierarchical structure for fuzzy modeling and control. IEEE Trans. Syst. Man Cybern, 23.
Yager R.R. (1998) On the construction of hierarchical fuzzy systems models. IEEE Trans. Syst. Man Cybern, 28, P. 55-66.
Mendel J.M. (2014) Introduction to type-2 fuzzy logic control: theory and application. John Wiley & Sons, Inc., Hoboken, New Jersey, 356 p.
Olizarenko S.A., Brezhnev E.V., Perepelitca A.V. (2010) The Type 2 Fuzzy Sets. Terminology and Representations. Information Processing Systems, 8(89), P. 131-140.
Kondratenko N.R., Snihur O.O. (2019) Investigating adequacy of interval type-2 fuzzy models in complex objects identifications problems. System Research and Information Technologies, 4, P. 94-104.
Karnik N.N. (1998) Introduction to type-2 fuzzy logic system. Proc. 1998 IEEE FUZZ Conf, 5, P. 915-920.
Yershov, S.V., Ponomarenko, R.M. (2018). Parallel Fuzzy Inference Method for Higher Order Takagi–Sugeno Systems. Cybernetics and Systems Analysis. Vol. 54, Issue 6, P. 170-180.
Ponomarenko R.M. (2018) Organizing the fuzzy inference based on multilevel parallelism. System Research and Information Technologies, 3, P. 98-109.
DOI: http://dx.doi.org/10.37943/AITU.2020.1.63641
Ссылки
- Ссылки не определены.
(P): 2707-9031
(E): 2707-904X
Articles are open access under the Creative Commons License
Нур-Султан
Бизнес-центр EXPO, блок C.1.
Казахстан, 010000