homescontents
deneme bonusu veren siteler deneme bonusu veren siteler deneme bonusu veren siteler deneme bonusu veren siteler deneme bonusu veren siteler
film izle
APPLICATION OF INFORMATION SYSTEMS AND TOOLS IN BIOINFORMATICS | Shevtsov | Scientific Journal of Astana IT University

APPLICATION OF INFORMATION SYSTEMS AND TOOLS IN BIOINFORMATICS

V. Shevtsov, A. Ismailova, U. Aitimova, O. Khapilina

Аннотация


The pace at which scientific data is produced and disseminated has never been as high as it is currently. Modern sequencing technologies make it possible to obtain the genome of a specific organism in a few days, and the genome of a bacterial organism in less than a day, and therefore researchers from the field of life science are faced with a huge amount of data that needs to be analyzed. In this connection, various fields of science are converging with each other, giving rise to new disciplines. So, bioinformatics is one of these fields, it is a scientific discipline that has been actively developing over the past decades and uses IT tools and methods to solve problems related to the study of biological processes. In particular, a crucial role in the field of bioinformatics is played by the development of new algorithms, tools and the creation of new databases, as well as the integration of extremely large amounts of data. The rapid development of bioinformatics has made it possible to conduct modern biological research. Bioinformatics can help a biologist to extract valuable information from biological data by using tools to process them. Despite the fact that bioinformatics is a relatively new discipline, various web and computer tools already exist, most of which are freely available. This is a review article that provides an exhaustive overview of some of the tools for biological analysis available to a biologist, as well as describes the key role of information systems in this interdisciplinary field.

Ключевые слова


Information systems, bioinformatics, databases.

Полный текст:

PDF (English)

Литература


Hagen, J. (2000). The origins of bioinformatics. 1(3), 231-236.

Fox, G., Stackebrandt, E., Hespell, R., Gibson, J., Maniloff, J., Dyer, T., . . . Magrum, L. J. S. (1980). The phylogeny of prokaryotes. 209(4455), 457-463.

Borodin, E. (2017). Personified medicine-medicine of the 21st century. 3 (19), 13-15.

Poznyak, A. S., Yu, W., Sanchez, E. N., & Perez, J. (1999). Nonlinear adaptive trajectory tracking using dynamic neural networks. 10(6), 1402-1411.

Holland, J. H. (1992). Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence. MIT press.

Koza, J. (1994). Genetic programming as a means for programming computers by natural selection. 4(2), 87-112.

Atlamazoglou, V., Thireou, T., Alexandridou, A., & Spyrou, G. (2008). A high throughput approach to keep alive a web-based database system for multiple search among published bioinformatics tools and databases. 2008 8th IEEE International Conference on BioInformatics and BioEngineering.

Edgar, R. C., & Batzoglou, S. J. C. (2006). Multiple sequence alignment. 16(3), 368-373.

Johnson, M., Zaretskaya, I., Raytselis, Y., Merezhuk, Y., McGinnis, S., & Madden, T. (2008). NCBI BLAST: a better web interface. 36(2), 5-9.

Avise, J. C. (2006). Evolutionary pathways in nature: a phylogenetic approach. Cambridge University Press.

atCREARE, U. A MODEL OF METABOLIC PROCESSES IN A HETEROGENEOUS MILIEU: FUNCTIONAL AND NUMERICAL SOLUTIONS.

Hodgkin, J., Paulini, M., & Tuli, M. A. (2012). Genome Mapping and Genomics of Caenorhabditis elegans. In Genome Mapping and Genomics in Laboratory Animals. Springer. 17-30.

Discala, C., Ninnin, M., Achard, F., Barillot, E., & Vaysseix, G. J. (1999). DBcat: a catalog of biological databases. 27(1), 10-11.

Hamm, G. H., & Cameron, G. N. (1986). The EMBL data library. 14(1), 5-9.

Burks, C., Fickett, J. W., Goad, W. B., Kanehisa, M., Lewitter, F. I., Rindone, W. P., . . . Bilofsky, H. (1985). CABIOS REVIEW: The GenBank nucleic acid sequence database. 1(4), 225-233.

Uphoff, C., & Drexler, H. (1992). Die Deutsche Sammlung von Mikroorganismen und Zellkulturen: Abteilung" Menschliche und tierische Zellkulturen". 9(1), 39-44.

Karolchik, D., Baertsch, R., Diekhans, M., Furey, T. S., Hinrichs, A., Lu, Y., . . . Thomas, D. (2003). The UCSC genome browser database. 31(1), 51-54.

Novère, N. L., Hucka, M., Mi, H., Moodie, S., Schreiber, F., Sorokin, A., . . . Wimalaratne, S. (2009). The systems biology graphical notation. 27(8), 735-741.

Matsuoka, Y., Funahashi, A., Ghosh, S., & Kitano, H. (2014). Modeling and simulation using CellDesigner. In Transcription Factor Regulatory Networks. Springer. 121-145.

Sreenivasaiah, K., & Kim, D. (2010). Current trends and new challenges of databases and web applications for systems driven biological research. 1, 147.

Menon, S. (2021). Bioinformatics approaches to understand gene looping in human genome. 6(7), 170-173.

Canese, K., & Weis, S. (2013). PubMed: the bibliographic database. 2(1).

Hall, T., Biosciences, I., & Carlsbad, C. (2011). BioEdit: an important software for molecular biology. 2(1), 60-61.

Tamura, K., Dudley, J., Nei, M., Kumar, S. (2007). MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. 24(8), 1596-1599.

Hung, L., Lin, S., Lin, C., Chung, C., Chung, Y. (2015). CUDA ClustalW: An efficient parallel algorithm for progressive multiple sequence alignment on Multi-GPUs. 58, 62-68.

Dayhoff, M. O. (1972). Atlas of protein sequence and structure. National Biomedical Research Foundation.

Henikoff, S., & Henikoff, J.(1992). Amino acid substitution matrices from protein blocks. 89(22), 10915-10919.

Lipman, D. J., Altschul, S. F., & Kececioglu, J. (1989). A tool for multiple sequence alignment. 86(12), 4412-4415.

Akella, L. M., Rejtar, T., Orazine, C., Hincapie, M., & Hancock, W. S. (2009). CLUE-TIPS, Clustering Methods for Pattern Analysis of LC− MS Data. 8(10), 4732-4742.

Powell, D. W., Weaver, C. M., Jennings, J. L., McAfee, K. J., He, Y., Weil, P. A. (2004). Cluster analysis of mass spectrometry data reveals a novel component of SAGA. 24(16), 7249-7259.

Krebs, A. R., Karmodiya, K., Lindahl-Allen, M., Struhl, K., & Tora, L.(2011). SAGA and ATAC histone acetyl transferase complexes regulate distinct sets of genes and ATAC defines a class of p300-independent enhancers. 44(3), 410-423.

Kaya, H., & Gündüz-Öğüdücü, Ş. (2013). SAGA: A novel signal alignment method based on genetic algorithm. 228, 113-130.

Hahn, F., & Rieser, H. (2010). Explaining speech gesture alignment in mm dialogue using gesture typology.

Lücking, A., Bergman, K., Hahn, F., Kopp, S., & Rieser, H. (2013). Data-based analysis of speech and gesture: The Bielefeld Speech and Gesture Alignment Corpus (SaGA) and its applications. 7(1), 5-18.

Waterhouse, A. M., Procter, J. B., Martin, D. M., Clamp, M., & Barton, G. (2009). Jalview Version 2—a multiple sequence alignment editor and analysis workbench. 25(9), 1189-1191.

Thorvaldsdóttir, H., Robinson, J. T., & Mesirov, J. (2013). Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration. 14(2), 178-192.

Page, R. (1996). Tree View: An application to display phylogenetic trees on personal computers. 12(4), 357-358.




DOI: http://dx.doi.org/10.37943/AITU.2022.59.49.002

Ссылки

  • Ссылки не определены.


(P): 2707-9031
(E): 2707-904X

Articles are open access under the Creative Commons License  


Нур-Султан
Бизнес-центр EXPO, блок C.1.
Казахстан, 010000

sjaitu@astanait.edu.kz
https://ejournal.unperba.ac.id/pages/uploads/sv388/ https://ejournal.unperba.ac.id/pages/uploads/ladangtoto/ https://poltekkespangkalpinang.ac.id/public/assets/scatter-hitam/ https://poltekkespangkalpinang.ac.id/public/assets/blog/sv388/ https://poltekkespangkalpinang.ac.id/public/uploads/depo-5k/ https://smpn9prob.sch.id/content/luckybet89/