beylikduzu escort bahcesehir escort beylikduzu escort esenyurt escort istanbul escort atakoy escort esenyurt escort avcılar escort sisli escort beylikduzu escort kumburgaz escort esenyurt escort
homescontents
beylikduzu escort istanbul escort bağcılar escort umraniye escort umraniye escort bahceşehir escort sexs hikaye sexs hikaye amator porno travesti escort sexs hikayeleri beylikduzu escort istanbul escort
film izle hd film film
avcilar escort beylikduzu escort esenyurt escort
istanbul escort
bornova escort bornova escort
Statistical analysis of random walks on network | Kalikova | Scientific Journal of Astana IT University

Statistical analysis of random walks on network

A. Kalikova

Аннотация


This paper describes an investigation of analytical formulas for parameters in random walks. Random walks are used to model situations in which an object moves in a sequence of steps in randomly chosen directions. Given a graph and a starting point, we select a neighbor of it at random, and move to this neighbor; then we select a neighbor of this point at random, and move to it etc. It is a fundamental dynamic process that arises in many models in mathematics, physics, informatics and can be used to model random processes inherent to many important applications. Different aspects of the theory of random walks on graphs are surveyed. In particular, estimates on the important parameters of hitting time, commute time, cover time are discussed in various works. In some papers, authors have derived an analytical expression for the distribution of the cover time for a random walk over an arbitrary graph that was tested for small values of n. However, this work will show the simplified analytical expressions for distribution of hitting time, commute time, cover time for bigger values of n. Moreover, this work will present the probability mass function and the cumulative distribution function for hitting time, commute time.

Ключевые слова


random work, hitting time, commute time, cover time

Полный текст:

PDF (English)

Литература


Zlatanov, N., & Kocarev, L. (2009). Random walks on networks: Cumulative distribution of cover time. Physical Review E, 80(4), 041102

Kang, U., Tong, H., & Sun, J. (2012, April). Fast random walk graph kernel. In Proceedings of the 2012 SIAM international conference on data mining (pp. 828-838). Society for Industrial and Applied Mathematics.

Adeleye, O., Yu, J., Ruan, J., & Sheng, Q. Z. (2020, February). Evaluating random walk-based network embeddings for web service applications. In Australasian Database Conference (pp. 198-205).

Springer, Cham.

Amancio, D.R., Silva, F.N., & Costa, L. D.F. (2015). Concentric network symmetry grasps authors’ styles in word adjacency networks. EPL (Europhysics Letters), 110(6), 68001.

Li, X., Han, Z., Wang, L., & Lu, H. (2015). Visual tracking via random walks on graph model. IEEE transactions on Cybernetics, 46(9), 2144-2155.

Dong, X., Shen, J., Shao, L., & Van Gool, L. (2015). Sub-Markov random walk for image segmentation. IEEE Transactions on Image Processing, 25(2), 516-527.

Spitzer, F. (2013). Principles of random walk (Vol. 34). Springer Science & Business Media.

Backstrom, L., & Leskovec, J. (2011, February). Supervised random walks: predicting and recommending links in social networks. In Proceedings of the fourth ACM international conference

on Web search and data mining (pp. 635-644).

Condamin, S., Bénichou, O., Tejedor, V., Voituriez, R., & Klafter, J. (2007). First-passage times in complex scale-invariant media. Nature, 450(7166), 77-80.

Nghiem, T.P., Maulana, K., Waluyo, A.B., Green, D., & Taniar, D. (2013, March). Bichromatic reverse nearest neighbors in mobile peer-to-peer networks. In 2013 IEEE International Conference on

Pervasive Computing and Communications (PerCom) (pp. 160-165). IEEE.

Arunachalam, A., & Sornil, O. (2015, February). An analysis of the overhead and energy consumption in flooding, random walk and gossip based resource discovery protocols in MP2P networks. In 2015

Fifth International Conference on Advanced Computing & Communication Technologies (pp. 292-297). IEEE.

Gurkan, T., Resul, D., Ramakrishnan B., Kilicaslan Y. (2017) Big Data Analysis for M2M Networks: Research Challenges and Open Research Issues. International Journal of Computer Networks and Applications (IJCNA), 27-34.




DOI: http://dx.doi.org/10.37943/AITU.2021.99.34.007

Ссылки

  • Ссылки не определены.


(P): 2707-9031
(E): 2707-904X

Articles are open access under the Creative Commons License  


Нур-Султан
Бизнес-центр EXPO, блок C.1.
Казахстан, 010000

sjaitu@astanait.edu.kz
film izle
pendik escort anadolu escort bostanci escort gebze escort kartal escort kurtkoy escort maltepe escort tuzla escort
Canlı Bahis Canlı Bahis
betpas giriş