FORECASTING CUSTOMER FUTURE BEHAVIOR IN RETAIL BUSINESS USING MACHINE LEARNING MODELS
Аннотация
Ключевые слова
Полный текст:
PDF (English)Литература
Mammadzada, A., Alasgarov, E., & Mammadov, A. (2021). Application of BG / NBD and gammagamma models to predict customer lifetime value for financial institution. Paper presented at the
th IEEE International Conference on Application of Information and Communication Technologies,
AICT 2021. doi:10.1109/AICT52784.2021.9620535
Hwang, Y.H. (2019). Hands-On Data Science for Marketing (1st ed.). Packt Publishing. https://www.
packtpub.com/product/hands-on-data-science-for-marketing/9781789346343
Cloud Architecture Center. (2019, February 6). Predicting Customer Lifetime Value with AI Platform.
https://cloud.google.com/architecture/clv-prediction-with-offline-training-intro
Chen, D., Sain, S.L., & Guo, K. (2012). Data mining for the online retail industry: A case study of RFM
model-based customer segmentation using data mining. Journal of Database Marketing & Customer
Strategy Management, 19(3), 197-208. doi:10.1057/dbm.2012.17
Chen, D. (2019). Online Retail II (Version 1) [Data set]. UCI Machine Learning Repository. https://
archive.ics.uci.edu/ml/datasets/Online+Retail+II
Gold, C. (2020). Fighting Churn with Data: The Science and Strategy of Customer Retention. Manning
Publications Company. https://www.manning.com/books/fighting-churn-with-data
Jahromi, A. T., Stakhovych, S., & Ewing, M. (2016). Customer churn models: a comparison of probability and data mining approaches. In Looking forward, looking back: Drawing on the past to shape the
future of marketing (pp. 144-148). Springer, Cham. doi:10.1007/978-3-319-24184-5_35
Bemmaor, A.C., Glady, N., & Hoppe, D. (2012). Implementing the Pareto/NBD Model: A UserFriendly Approach. In Quantitative Marketing and Marketing Management (pp. 39-49). Gabler Verlag,
Wiesbaden. doi:10.1007/978-3-8349-3722-3_1
Bardük, B. (2020, October). Modelling Time Statistics for Customer Churn Prediction. In 2020 28th
Signal Processing and Communications Applications Conference (SIU) (pp. 1-4). IEEE. doi:10.1109/
SIU49456.2020.9302329
Kim, T., Kim, D., & Ahn, Y. (2022). Instant customer base analysis in the financial services sector.
Expert Systems with Applications, 202. doi:10.1016/j.eswa.2022.117326
Reyes, M. (Ed.). (2019). Consumer Life Cycle and Profiling: A Data Mining Perspective. In Consumer
Behavior and Marketing. IntechOpen. https://doi.org/10.5772/intechopen.85407
Nkikabahizi, C., Cheruiyot, W., & Kibe, A. (2022). Chaining Zscore and feature scaling methods
to improve neural networks for classification. Applied Soft Computing, 123, 108908. https://doi.
org/10.1016/j.asoc.2022.108908
Bharadwaj, S., Anil, B.S., Pahargarh, A., Pahargarh, A., Gowra, P.S., & Kumar, S. (2018, August). Customer Churn prediction in mobile networks using logistic regression and multilayer perceptron
(MLP). In 2018 Second International Conference on Green Computing and Internet of Things (ICGCIoT)
(pp. 436-438). IEEE. doi:10.1109/ICGCIoT.2018.8752982
DOI: http://dx.doi.org/10.37943/ILMM7870
Ссылки
- Ссылки не определены.
(P): 2707-9031
(E): 2707-904X
Articles are open access under the Creative Commons License
Нур-Султан
Бизнес-центр EXPO, блок C.1.
Казахстан, 010000