SYSTEM OF PREVENTIVE АCTION OF CONSTRUCTION ENTERPRISES ON THE BASIS OF IDENTIFICATION OF ANTICRISIS POTENTIAL
Аннотация
Ключевые слова
Полный текст:
PDF (English)Литература
Zeltser, R., Bielienkova, O., Novak, Ye. and Dubinin, D. (2019). Digital Transformation of Resource
Logistics and Organizational and Structural Support of Construction. Nauka i innovatsii, vol. 15(5),
-51
Tugay, O.A., Zeltser, R.Ya., Kolot, M.A., Panasiuk, I.O. (2019). Organization of Supervision over
Construction Works Using Uavs and Special Software. Nauka i innovatsii, vol. 15(4), 23-32
Tugay, O.A., Shebek, M.O., Dubynka, O.V. 2019). Identifying New and Structuring Existing
Organizational and Technological Approaches to Managing the Cycle of Engineering Preparation
for a Construction and Investment Project. Nauka innov. 15(2), 105-114
Abidali, A.F., & Harris, F. (1995). A methodology for predicting company failure in the
construction industry. Construction Management and Economics, vol. 13(3), 189-196. doi:
1080/01446199500000023
Chan, J. K. W., Tam, C. M., & Cheung, R. K. C. (2005). Construction firms at the crossroads in hong kong:
Going insolvency or seeking opportunity. Engineering, Construction and Architectural Management,
vol. 12(2), 111-124. doi: 10.1108/09699980510584476
Edum-Fotwe, F., Price, A., & Thorpe, A. (1996). A review of financial ratio tools for predicting
contractor insolvency. Construction Management and Economics, vol. 14(3), 189-198. doi:
1080/014461996373458
Kangari, R., Farid, F., & Elgharib, H.M. (1992). Financial performance analysis for construction
industry. Journal of Construction Engineering and Management, vol. 118(2), 349-361. doi: 10.1061/
(ASCE)0733-9364(1992)118:2(349)
Mason, R. J., & Harris, F. C. (1979). Predicting company failure in the construction industry. Proceedings
Institution of Civil Engineers, vol. 66(2), 301-307.
Tserng, H., Lin, G., Tsai, L., & Chen, P. (2011). An enforced support vector machine model for
construction contractor default prediction. Automation in Construction, 20(8), 1242-1249. doi:
1016/j.autcon.2011.05.007
Deakin, E. B. (1972). A discriminant analysis of predictors of business failure. Journal of Accounting
Research, vol. 10(1), 167-179.
Edison, H.J. (2003). Do indicators of financial crises work? an evaluation of an early warning system.
International Journal of Finance and Economics, vol. 8(1), 11-53. doi: 10.1002/ijfe.197
Karas, M., & Režňáková, M. (2017). The stability of bankruptcy predictors in the construction and
manufacturing industries at various times before bankruptcy. E a M: Ekonomie a Management, 20(2),
-133. doi: 10.15240/tul/001/2017-2-009
Lin, F., Liang, D., & Chen, E. (2011). Financial ratio selection for business crisis prediction. Expert
Systems with Applications, 38(12), 15094-15102. doi: 10.1016/j.eswa.2011.05.035
Spicka, J. (2013). The financial condition of the construction companies before bankruptcy. European
Journal of Business and Management, vol. 5(23), 160-169.
Thomas Ng, S., Wong, J. M. W., & Zhang, J. (2011). Applying Z-score model to distinguish insolvent
construction companies in China. Habitat International, vol. 35(4), 599-607. doi: 10.1016/j.
habitatint.2011.03.008
Tian, S., Yu, Y., & Guo, H. (2015). Variable selection and corporate bankruptcy forecasts. Journal of
Banking and Finance, vol. 52, pp. 89-100.
Tseng, F., & Hu, Y. (2010). Comparing four bankruptcy prediction models: Logit, quadratic interval
logit, neural and fuzzy neural networks. Expert Systems with Applications, vol. 37(3), 1846-1853. doi:
1016/j.eswa.2009.07.081
Wang, Y., & Lee, H. (2008). A clustering method to identify representative financial ratios. Information
Sciences, vol. 178(4), 1087-1097. doi: 10.1016/j.ins.2007.09.016
Zmijewski, M. E. (1984). Methodological issues related to the estimation of financial distress
prediction models. Journal of Accounting Research, vol. 22(SUPPL.), 59-82. Retrieved from www.
scopus.com
Stetsenko, S.P., Tytok, V.V., Emelianova, O.M., Bielienkova, O. Yu and Tsyfra T.Yu. (2020). Management
of Adaptation of Organizational and Economic Mechanisms of Construction to Increasing Impact
of Digital Technologies on the National Economy. Journal of Reviews on Global Economic. no. 9, 149-
Zvarikova, K., Spuchlakova, E., & Sopkova, G. (2017). International comparison of the relevant
variables in the chosen bankruptcy models used in the risk management. Oeconomia Copernicana,
vol. 8(1), 145-157. doi: 10.24136/oc.v8i1.10
Rutkovskaya, D., Pilins’kij, & M.,Rutkovskij, L. (2007). Nejronnye seti, geneticheskie algoritmy i
nechetkie sistemy. M.: Goryachaya liniya – Telekom.
Tugai O.A., Hryhorovskyi P.Ye., Khyzhniak V.O., Stetsenko S.P., Bielienkova O.Yu., Molodid О.S.,
Chernyshev D.O (2019). Organizational and technological, economic quality control aspects in the
construction industry: collective monograph – Lviv-Toruń: Liha-Pres.
Baležentis, T., & Zeng, S. (2013). Group multi-criteria decision making based upon interval-valued
fuzzy numbers: An extension of the MULTIMOORA method. Expert Systems with Applications, vol.
(2), 543-550. doi: 10.1016/j.eswa.2012.07.066
DOI: http://dx.doi.org/10.37943/AITU.2020.53.13.002
Ссылки
- Ссылки не определены.
(P): 2707-9031
(E): 2707-904X
Articles are open access under the Creative Commons License
Нур-Султан
Бизнес-центр EXPO, блок C.1.
Казахстан, 010000