ANALYSIS OF MACHINE LEARNING METHODS FOR PREDICTIONS OF STOCK EXCHANGE SHARE PRICES
Аннотация
Ключевые слова
Полный текст:
PDF (English)Литература
Weng, B., Ahmed, M.A., & Megahed, F.M. (2017). Stock market one-day ahead movement prediction using disparate data sources. Expert Systems with Applications, 79, 153-163. https://www.
sciencedirect.com/science/article/abs/pii/S0957417417301331
Li, X., Huang, X., Deng, X., & Zhu, S. (2014). Enhancing quantitative intra-day stock return prediction by integrating both market news and stock prices information. Neurocomputing, 142, 228–238.
https://www.sciencedirect.com/science/article/abs/pii/S092523121400647X
Arévalo, A., Niño, J., Hernández, G., & Sandoval, J. (2016, August). High-frequency trading strategy based on deep neural networks. In International conference on intelligent computing (pp. 424-436).
Springer, Cham. https://www.researchgate.net/publication/305214717_High_Frequency_Trading_Strategy_Based_on_Deep_Neural_Networks.
Machine learning techniques for predicting price indicators: indicator functions and news analysis. http://elitetrader.ru/index.php?newsid=279203
Van Horne, J. C., & Parker, G. G. (1967). The random-walk theory: an empirical test. Financial Analysts Journal, 23(6), 87-92. https://econpapers.repec.org/article/asiaeafrj/2014_3ap_3a1840-1848.htm
Schumaker, R. P., & Chen, H. (2009). A quantitative stock prediction system based on financial news. Information Processing & Management, 45(5), 571-583. https://www.sciencedirect.com/science/
article/abs/pii/S0306457309000478.
Ding, X., Zhang, Y., Liu, T., & Duan, J. (2014, October). Using structured events to predict stock price movement: An empirical investigation. In Proceedings of the 2014 Conference on Empirical
Methods in Natural Language Processing (EMNLP) (pp. 1415-1425). https://www.researchgate.
net/publication/301405008_Using_Structured_Events_to_Predict_Stock_Price_Movement_An_Empirical_Investigation.
Shah, V. H. (2007). Machine learning techniques for stock prediction. Foundations of Machine Learning| Spring, 1(1), 6-12. https://evilinside.ru/texniki-mashinnogo-obucheniya-dlya-prognozirovaniyacen-akcij-funkcii-indikatorov-i-analiz-novostej/
Bollen, J., & Mao, H. (2011). Twitter mood as a stock market predictor. IEEE Annals of the History of Computing, 44(10), 91-94. https://www.sciencedirect.com/science/article/abs/pii/
S187775031100007X
Hellström, T. (2001). Techniques and software for development and evaluation of trading strategies. Univ. http://www.cs.umu.se/~thomash/reports/phdthesis.pdf
Pahwa, K., & Agarwal, N. (2019, February). Stock market analysis using supervised machine learning. In 2019 International Conference on Machine Learning, Big Data, Cloud and Parallel Computing
(COMITCon) (pp. 197-200). IEEE. https://ieeexplore.ieee.org/document/8862225
Zhang, K., Zhong, G., Dong, J., Wang, S., & Wang, Y. (2019). Stock market prediction based on generative adversarial network. Procedia computer science, 147, 400-406. https://www.sciencedirect.com/
science/article/pii/S1877050919302789
Song, Y. G., Cao, Q. L., & Zhang, C. (2018). Towards a new approach to predict business performance using machine learning. Cognitive Systems Research, 52, 1004-1012. https://www.sciencedirect.
com/science/article/abs/pii/S138904171830437
DOI: http://dx.doi.org/10.37943/AITU.2021.47.22.009
Ссылки
- Ссылки не определены.
(P): 2707-9031
(E): 2707-904X
Articles are open access under the Creative Commons License
Нур-Султан
Бизнес-центр EXPO, блок C.1.
Казахстан, 010000